A hybrid discontinuous Galerkin = interface method for the computational modelling of failure
نویسندگان
چکیده
The present contribution is concerned with the computational modelling of failure along well-de ned surfaces, which occur for example in the case of light-weight composite materials. A hybrid method will be introduced which makes use of the discontinuous Galerkin method in combination with a nite element interface approach. As a natural choice interface elements are introduced along the known failure surface. The discontinuous Galerkin method is applied in the pre-failure regime to avoid the unphysical use of penalty terms and instead to enforce the continuity of the solution along the interface weakly. Once a particular failure criterion is ful lled, the behaviour of the interface is determined constitutively, depending on the displacement jump. The applicability of the proposed method is illustrated by means of two computational model problems. Copyright ? 2004 John Wiley & Sons, Ltd.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملElasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملElement free Galerkin method for crack analysis of orthotropic plates
A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...
متن کاملDiscontinuous Galerkin Methods for Convection-diffusion Problems Modelling Mass-transfer through Semipermeable Membranes
We propose a family of Interior Penalty Discontinuous Galerkin (IP-DG) finite element methods for the solution of semilinear convection-reaction-diffusion systems on partitioned subdomains arising in the modelling of mass transfer through semipermeable membranes. Non-linear interface conditions are imposed at the sub-domain interfaces. The problem considered is relevant to the modelling of chem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004